Quantitative detection of small molecule/DNA complexes employing a force-based and label-free DNA-microarray.

نویسندگان

  • Dominik Ho
  • Christian Dose
  • Christian H Albrecht
  • Philip Severin
  • Katja Falter
  • Peter B Dervan
  • Hermann E Gaub
چکیده

Force-based ligand detection is a promising method to characterize molecular complexes label-free at physiological conditions. Because conventional implementations of this technique, e.g., based on atomic force microscopy or optical traps, are low-throughput and require extremely sensitive and sophisticated equipment, this approach has to date found only limited application. We present a low-cost, chip-based assay, which combines high-throughput force-based detection of dsDNA.ligand interactions with the ease of fluorescence detection. Within the comparative unbinding force assay, many duplicates of a target DNA duplex are probed against a defined reference DNA duplex each. The fractions of broken target and reference DNA duplexes are determined via fluorescence. With this assay, we investigated the DNA binding behavior of artificial pyrrole-imidazole polyamides. These small compounds can be programmed to target specific dsDNA sequences and distinguish between D- and L-DNA. We found that titration with polyamides specific for a binding motif, which is present in the target DNA duplex and not in the reference DNA duplex, reliably resulted in a shift toward larger fractions of broken reference bonds. From the concentration dependence nanomolar to picomolar dissociation constants of dsDNA.ligand complexes were determined, agreeing well with prior quantitative DNAase footprinting experiments. This finding corroborates that the forced unbinding of dsDNA in presence of a ligand is a nonequilibrium process that produces a snapshot of the equilibrium distribution between dsDNA and dsDNA.ligand complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing a Label Free Aptasensor for Detection of Methamphetamine

A label-free electrochemical nucleic acid aptasensor for the detection of methamphetamine (MA) by the immobilization of thiolated self-assembled DNA sequences on a gold nanoparticles-chitosan modified electrode is constructed. When MA was complexed specifically to the aptamer, the configuration of the nucleic acid aptamer switched to a locked structure and the interface of the biosensor changed...

متن کامل

Datum der mündlichen Prüfung: 21.10.2009- 1- INHALTSVERZEICHNIS

Force-based ligand detection is a promising method to characterize molecular complexes label-free at physiological conditions. Because conventional implementations of this technique, e.g., based on atomic force microscopy or optical traps, are low-throughput and require extremely sensitive and sophisticated equipment, this approach has to date found only limited application. We present a low-co...

متن کامل

A novel label-free cocaine assay based on aptamer-wrapped single-walled carbon nanotubes

Objective(s): This paper describes a selective and sensitive biosensor based on the dissolution and aggregation of aptamer wrapped single-walled carbon nanotubes. We report on the direct detection of aptamer–cocaine interactions, namely between a DNA aptamer and cocaine molecules based on near-infrared absorption at λ807. Materials and Methods: First a DNA aptamer recognizing cocaine was non-co...

متن کامل

P-211: Quantitative Changes of Fetal DNA in Maternal Circulation during Pregnancy Based on Detection of SRY Gene in Ovine Species

Background: It is well documented that fetal DNA can cross the placenta and is present in peripheral maternal blood during pregnancy in human. This fetal DNA also named circulating cell free fetal DNA, has emerged as a valuable source for genetic evaluation. Compared with humans, ovine species have a different structure of placental (synepitheliochorial) with no direct contact between the troph...

متن کامل

Molecularly resolved label-free sensing of single nucleobase mismatches by interfacial LNA probes

So far, there has been no report on molecularly resolved discrimination of single nucleobase mismatches using surface-confined single stranded locked nucleic acid (ssLNA) probes. Herein, it is exemplified using a label-independent force-sensing approach that an optimal coverage of 12-mer ssLNA sensor probes formed onto gold(111) surface allows recognition of ssDNA targets with twice stronger fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 96 11  شماره 

صفحات  -

تاریخ انتشار 2009